John Harwell

■ (651) 261–2862
 ■ john.r.harwell@gmail.com
 ● https://jharwell.github.io
 ③ Google Scholar
 ● Github

Summary

- Experienced software architect with 10+ years of experience across domains.
- Skilled multi-agent systems researcher and proven interdisciplinary collaborator, leader, mentor, and problem-solver.

Education

- 2016–2022 Ph.D. in Computer Science, University of Minnesota, Twin Cities.
- 2016–2018 M.S. in Computer Science, University of Minnesota, Twin Cities.

Areas of Expertise

Theory	Modeling : Bio-inspired modeling, stochastic processes, differential equations, graph the- ory, queueing theory Algorithms :Parallel, greedy, bio-inspired, graphical, task allocation
Embedded Systems	OS: Petalinux, FreeRTOS, RTEMS, bare-metal Architectures: ARM Cortex-M7, SPARC LEON2 Middleware: QEMU Design: Hardware/software trade-offs, hotfix debugging
Multi-agent Systems	 OS: Linux (ubuntu, debian, raspbian) Platforms: ARGoS, Gazebo, ROS1, ROS2, Turtlebot3 Behavior Design: Vector fields, bio-inspired modeling, decentralized task allocation Analysis: Differential equations, cooperative algorithms, metric design, imperfect sensor/actuator compensation
High Performance Computing	Platforms : SLURM, PBS Optimization : Profiling, architectural/memory/cache analysis, algorithm analysis
	Technical Skills
Languages	Expert : C: embedded, systems programming C++: 11/14/17/20 with templates, metaprogramming Proficient : C: kernel programming, python
	Familiar: Fortran, bash, fish, MATLAB
Software Development	 Familiar: Fortran, bash, fish, MATLAB Architecture: Design patterns, OOP, polymorphism Devops: GitHub/Gitlab CI/CD, Ansible, Docker Toolchains: LLVM (clang-*), Intel (icx, VTune), GNU (gcc-*) Tools: cmake, Bazel, git, gdb, valgrind, OpenOCD, oscilloscope, JTAG, Conan, Black Magic Debug Data Structures: Graphs, trees, R-trees, Poisson queues, heaps, maps
Software Development Protocols Libraries	 Familiar: C. Kenter programming, python Familiar: Fortran, bash, fish, MATLAB Architecture: Design patterns, OOP, polymorphism Devops: GitHub/Gitlab CI/CD, Ansible, Docker Toolchains: LLVM (clang-*), Intel (icx, VTune), GNU (gcc-*) Tools: cmake, Bazel, git, gdb, valgrind, OpenOCD, oscilloscope, JTAG, Conan, Black Magic Debug Data Structures: Graphs, trees, R-trees, Poisson queues, heaps, maps UART, I2C, SPI, NMEA STL, Boost, OpenMP, MPI, CMSIS, pandas

Experience

2024–present	 Senior Algorithm Architect, EPISCI, Minneapolis, MN. Led algorithmic development effort for UAV systems in GPS-denied environments using task allocation and Mobile Abdoc Wireless Networks (MANETE)
2023–2024	 Embedded Development Lead, SATELLES, Minneapolis, MN. Demonstrated technical leadership by developing software engineering guidelines and methodologies for large software framework to support overall business goals. Facilitated meetings with key leaders to ensure timely decision-making and communication between stakeholders and assisted in technical personnel management in small teams. Design, implementation, and maintenance of a custom QEMU plugin to reduce risk in commercializing custom Position, Navigation, Timing (PNT) ASIC. Ported large software framework for embedded PNT receivers to custom ASIC.
2022–2023	 Postdoctoral Researcher, SIFT, Minneapolis, MN. Developed models of flocking behaviors to extract control policies and parameters automatically from trajectory data to estimate physical properties and limits of military vehicles. Reduced debugging time by enhancing in-house tooling for efficient visualization of multivariate spatio-temporal data of large-scale multi-agent systems. Contributed to business development through market research and proposal writing.
2016–2022	 Researcher, UNIVERSITY OF MINNESOTA, Minneapolis, MN. Achieved publication of 9 papers at top conferences and journals, including 6 first author papers, through strong writing and organization skills, and collaboration with other researchers. Derived cuboid structure model using graph theory to develop simple algorithms to provably manipulate graphs (structures) from one state to another. Demonstrated robust predictions of steady-state collective foraging behaviors up to practical engineering limits using differential equation modeling. Showed that the origin of collective intelligence in task allocating swarms lies in self-organized learning task relationships, rather than costs. Reduced development cycles and increased utility of automated design methods through better measurements for design principles of multi-agent systems.
2016–2022	 Research Group Leader, UNIVERSITY OF MINNESOTA, Minneapolis, MN. Mentored highs school and undergraduate students interested in Al, robotics, and academic research to apply for grants, publish original research, and present at workshops. Managed parallel undergraduate research projects through weekly meetings, check-ins. Helped students to develop as independent researchers: fostered excitement in research through freedom of topic choice and technical approach, and clarity in student goals through project scoping.
2013–2016	 Research Engineer, SOUTHWEST RESEARCH INSTITUTE, San Antonio, TX. Led flight software development on NASA subcontract for Cyclone Global Navigation Satellite System (CYGNSS) in collaboration with the University of Michigan. Developed prototype NASA cFS-compatible file system with configurable memory footprint and increased robustness for flash-based media.
	Open-Source Projects
2016-present	 Author, CORE SWARM LIBRARY, . Middleware-esque C++ library providing a transparent, zero-cost API to different robotics platforms (ROS1, ARGoS, etc.), for both real and simulated robot types. Computationally optimized for efficient execution with systems of over 10,000 robots on supercomputing clusters and on real systems of Raspberry PI-powered TurtleBot3 robots.
2016-present	 Author, C/C++ DEVELOPMENT CORE, C , C++ . Focused on reusability to kickstart development on any C/C++ project. C++ modules: metric collection, logging, spatial reasoning, data structures. C++ generic design patterns: decorator, factor, FSM, prototype, singleton, visitor. C modules: data structures, minimal stdlib, publisher/subscriber bus, logging mechanisms for embedded applications.
2017-present	 Author, SIERRA: SCIENTIFIC METHOD AUTOMATION, D. Given a user query of an independent variable over a range, generate experimental inputs, run experiments, process results, and generate visualizations. Plugin-based python framework supports any agent type, platform (e.g., simulator, ROS1), or execution environment (e.g., supercomputing cluster, real robot).